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ABSTRACT In this work we present a search based approach using

Music identification is the process of matching an audio streafffite-state transducers (FSTs). We learn an inventory of mu-
to a particular song. Previous work has relied on hashingSiC Sound units via clustering, and train Gaussian mixture
where an exact or almost-exact match between local featuréd0dels for each unit. The use of Gaussian mixtures to model
of the test and reference recordings is required. In this work!® acoustics of music phones allows us to leverage tech-
we present a new approach to music identification based dHdues commonly used in speech recognition. Our acoustic
finite-state transducers and Gaussian mixture models. We afflodeling approach can tolerate small variations in acoustic
ply an unsupervised training process to learn an inventory dionditions more naturally than hashing, which is based on ex-
music phone units similar to phonemes in speech. We als8Ct o almost exact matching of fingerprints. In our approach
learn a unique sequence of music units characterizing ead9ngs are represented by unique sequences of music phones.
song. We further propose a novel application of transduceré/eé construct a compact recognition transducer where each
for recognition of music phone sequences. Preliminary expeRath corresponds to a unique song. This representation offers
iments demonstrate an identification accuracg®f% ona  Many unique advantages. For instance generic automata oper-

database of ovelr5,000 songs running faster than real time. ations such as minimization allow us to remove redundancies
in the song graph. As a result efficient search is possible. Ef-

~Index Terms— Music identification, acoustic modeling, fectively we propose to transform the problem of music iden-
finite-state transducers. tification into a string matching operation where FSTs are a
natural formalism for constraining the search.
1. INTRODUCTION

Automatic identification of music has recently been of sub- 2. ACOUSTIC MODELING
stantial interest [4, 1, 3]. This technology can be applied to a . ) _ o )
number of usage scenarios. End users can identify the song fur acoustic modeling approach consists of jointly learning
tle, album and recording artist(s) of a song with just a short au@n inventory ofmusic phonesind the sequence of units best
dio snippet. Content distribution networks can identify copy-representing each song. We represent each song as a sequence
righted audio within their systems. Finally, recording labelsof mel-frequency cepstral coefficient (MFCCs) vectors. Cep-
can monitor radio broadcasts to ensure correct accountingtra have been used extensively in speech processing, and
Music identification is challenging because the recording migh@ve also recently been shown to be effective in the analy-
be noisy, of poor quality, and/or marred with channel effectssis of music [1, 9]. We use the first twelve coefficients, the
In addition, the test recording might consist of only a fewenergy, and their first and second derivatives to produie a
seconds of audio which needs to be aligned to the referenéémensional feature vector.
recording to make a match. Each song is initially broken into pseudo-stationary seg-
Previous work in music identification can be classifiedments. We us¢00ms windows over the feature stream. Sin-
into hashing and search approaches. Hashing approaches (€l§,diagonal covariance Gaussian models are fitted to each
[4]) compute local fingerprints for an audio snippet, retrievewindow and the Kullback-Liebler (KL) divergence is mea-
songs with matching fingerprints from a hash table, and piciured between adjacent windows. We hypothesize segment
amongst these candidates using some metric of match acdyeundaries where the KL divergence is above an experimen-
racy. Some hashing approaches [3] learn the features discriri@lly determined threshold.
inatively. In a search-based approach [1], cepstral features We next apply clustering to the segment collection. For
over the audio stream are decoded directly into a sequen@&ch segment we train a single initial diagonal covariance
of audio events, as in speech recognition. Both the decodingaussian model. As in [5] we use maximum likelihood as
and the mapping of sound sequences to songs is driven byaa objective distance function rather than the more common
hidden Markov model (HMM) representation. However, thisEuclidean distance. See [5] for further details.
system looks only for atomic sound sequences of a particular Since song data labeled with music phone transcriptions
length, presumably to control search complexity. is not available we cannot use the standard EM training al-
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The size ofFact(S) may be quite large, and thus it is not

immediately clear that it is possible to construct a compact
transducer with this property. In our experimenfs,is about
gorithm. Instead we use an approach similar to that of [1]15-000 and the average length of a song is more thano.
Music phones are represented with Gaussian mixture acougDus, in the worst casgFact S| can be as large @s,000 x
tic models (GMMs). We alternate between finding the best 700" &~ 43 x 10°. The size of a naive trie-based represen-
music phone transcription per song given the current moddftion would thus be prohibitive. _
and refining the GMMs given the current transcriptions. However, several _automata-theore_tlc results suggest that a
The reference transcription changes for each iteration gOMPact representation may be possible [2]. In fact, the size
GMM learning. Therefore it is not possible to use trainingOf the minimal deterministic automaton representing a single
data likelihood as a measure of convergence. We instead uSgquence is linear inz|. More precisely [2]:
the edit distance, a string similarity metric defined for our pur-
poses as the minimal number of insertions, substitutions, and @ < 2z -2 |E| < 32| — 4. @)
letions of music phones requir ransform one transcrip- .
ggne%nﬂosa%othuesr.clgoro aessorfgiﬁtelgttzzsa)l bseothect)raentsgrisf: F\)/vhereQ and £ are the set of states and transitions of the
tion given to songs at iteration: and EQa, b) the edit dis- factor automaton af. For the case of the minimal determin-
tance of sequencesandb. At each iteration, we compute istic factor automaton representnSg we have found ?hf"‘t the
the total edit distance’; = 3. _ ED(ti(s), ;1 (s)) as our number of transitions is about twice that of the original au-
convergence measure. We E%f/e fonihdté) converge after tomaton. In particular, the minimal automaton representing
around twenty iterations. Figure 1 illustrates how this quan@!l 15,000 songs has abou7.5M transitions and the corre-
tity changes during training for three phone inventory sizes. sponding minimal factor automaton abgt5M transitions.

Fig. 1. Average edit distance per song vs. training iteration

3. RECOGNITION TRANSDUCER 3.2. Factor Transducer Construction

In the following, we describe the construction of the factor au-

Our music identification system is based on weighted finitetomaton ofS from a finite automaton accepting the sequences
state transducers and Viterbi decoding as is common in speeghs, and more generally, the construction of a compact recog-
recognition [8]. The decoding is based on the acoustic modelition transducef’.
described in the previous section and a compact transducer \We construct a deterministic and minimal automaton rep-
that maps music phone sequences to corresponding song idegsenting the sequencesS$nand more generally a determin-
tifiers. This section describes the algorithms for constructingstic (subsequential) and minimal finite-state transducer map-
such a transducer. ping each song to its identifier using transducer determiniza-

Given a finite set of songS, the music identification task tion and minimization algorithms [6, 7]. Figure 2 shows the
consists of determining the songs $hthat contain a query transducer mapping each song to its identifier before applica-
song snippet:. Since a song snippet may be an arbitrarytion of determinization and minimization, whehis reduced
sample extracted from a song, the recognition transducer mugj three short songs.

map any sequence of music phones appearing in a song to the et A, be the acceptor obtained by omitting the output

corresponding song identifiers. labels of Ty. The factor automatom of S is constructed
from Ay by creating are-transition from the initial state of
3.1. Factor automata Ap to all other states afly and making all states of final.

This automaton clearly accepts any factorAf. Applying
More formally, let A denote the set of music phones. Thedeterminization and minimization, we create the minimal de-
song setS' = {z1,...,x,,} is a set of sequences iv*. A terministic automatom; representindgact(.S). Figure 3(a)
factor, or substring of a sequence € A* is a sequence of shows the result of that construction when applied to the ac-
consecutive phones appearingzin Thus,y is a factor ofr ~ ceptorA, obtained by omitting the output labels of the trans-
iff there existsu,v € A* such thatr = uyv. The set of ducer of Figure 2.
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Fig. 3. (a) Deterministic and minimal unweighted factor acceptgrfor two songs. (b) Deterministic and minimal weighted
factor accepto, for two songs.

This leads to a compact automaton represerifing(S),  minimal deterministic transducer representing all songs.
but it does not allow us to output the song identifier associated
with each factor. To accomplish this, one could augment al :
accepting paths of the automatah, i.e. all factors, with 5'3' Weighted Factor Transducers
output labels corresponding to the song identifiers. Howeverthe finite-state transducéF just described is unweighted,
since output labels cannot be shared among factors along tkgat is all song snippets are assigned the same log-likelihood.
same path, this would require splitting states to separate pathfowever the distribution of the weights along a given path
and would yield a transducer exponentially larger tan can be changed (without affecting the total weight) to sub-
We instead create a compact weighted acceptor over trgtantially improve recognition speed when using a Viterbi de-
tropical semiringacceptingFact(S) that associates the to- coder with beam pruning. This can be done by applying the
tal weight s, to eachz € Fact(S). A crucial advantage of weight pushing algorithm in thieg semiring[7] to the trans-
this representation is the use of weighted determinization anducer?'. As a result each prefix of a path inT" is weighted
minimization [6] during which the song identifier is treated according to the frequency of snippets starting withAs a
as a weight that can be distributed along a path. The propertgsult, more frequent factors are preferred during decoding.
that the sum of the weights along the path labeled wife ~ Our experiments show that this can result in a substantially

s, Is preserved by these operations. higher accuracy for a given speed.
A, is constructed by adding weights #,. The weight
assigned to ar-transition reaching staigis the integer song 4. EXPERIMENTAL RESULTS

identifier of the unique accepting pathhy going throughy.

All other weights are zero. This guarantees the weight of eachur data set consisted 0,455 songs in128kbps MP3 for-

factorz to be exactlys,. The final automaton; is produced  mat. The average song duration w8 minutes, for a total

by applying weighted determinization and minimization overof over 1,000 hours of training audio. For the main set of ex-

the tropical semiring. The weighted acceptby, obtained periments, we trained and tested on “clean” data, i.e., audio

after determinization and minimization, is transformed into ayithout any added noise or distortions. However, a pre”mi-

transducefl” by simply treating each output weight integer asnary experiment on, 000 song snippets mixed with additive

a regular output symbol. white noise at a SNR o25dB resulted in an identification
Figure 3(b) shows the weighted automatbncorrespond- accuracy 0f95.9%, suggesting that our acoustic models are

ing to the unweighted automateh of Figure 3(a). Note that robust to noise.

the number of states and transitions has not increased from Figure 4 gives accuracy rates for three experiments. All

A, to A;. Remarkably, even in the case 31,000 songs, the figures are for in-set song classification only — the rejection

total number of transitions of the weighted accepierwas  performance of the classifiers is tested separately. We selected

about59.6M, only about0.17% more than that of4;. This 15,455 randomly collected segments (one per song) from our

confirms empirically the benefits of our representation. Thussong collection. FS is the full song identification task where

the construction algorithm just described leads to a recognive use a full song transduc@y and full song snippets. This

tion transducefl”’ whose size is less tha2 times that of the  experiment tests the performance of the system under ideal
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Fig. 4. In-set accuracy for three different experiments

circumstances. PS is the partial song task where identific

tion is performed on ten seconds of song audio, with the ung

weighted factor transducé&r. PS-PUSH is the same task after

guence of music units. While we have not explored this aspect
deeply, preliminary experiments suggest that this representa-
tion may vyield interesting insights into structural features of
music, such as repeated chorus elements and tune similarity,
or plagiarism, across songs.

In future work, we will characterize the performance of
the system in the presence of various types of noise and dis-
tortions. We also plan to explore the use of discriminative
learning techniques to further improve the performance of the
system under noise and signal distortion conditions.
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using weight pushing to add weightso
We have also tested the ability of our system to reject out-,
of-set songs. We constructed a mixture Gaussian backgrou
acoustic model by clustering mixture components across alf
music phones. We then constructed a three-dimensional fea-
ture vector L., Ly, (L, — Ly)] for each song snippet, where
L, and L, are the log-likelihoods of the best path and back-
ground acoustic models, respectively. We applied a suppoli]
vector machine (SVM) td 5,455 positive and13,811 nega-
tive (out-of-set) song snippets. With ten-fold cross-validation
and a radial basis function kernel, we achieve an accuracy of
96.4%. 2]
Music identification using the whole song audio works al-
most flawlessly 9.7% in-set identification accuracy). Ten
second snippets are recognized with the factor transducer wifB]
degraded accuracy (lo90’s). However, weight pushing im-
proves the accuracy of the system back upd$%. All ex-
periments run faster than real time: for instance with a search
beam width of12, the runtime i9).48 of real time. (4]

5. CONCLUSION

[5]
In this paper we describe a novel application of weighted
finite-state transducers to music identification. In contrast to
previous approaches our system does not rely on obtaining[g
near-exact match between test and reference feature values.
In addition our system matches music phone sequences of ar-
bitrary length. We have performed an initial set of identifica-
tion experiments which have demonstrated the accuracy and]
potential of our system.

We believe that the combination of GMMs for acoustic
modeling and FSTs for song structure representation and miag]
nipulation offers some intriguing advantages over more tra*
ditional hashing schemes. GMMs naturally tolerate small
changes in the music signal. Simple signal processing tech-
nigues such as cepstral mean and variance normalization c
be also leveraged to handle small noise and channel distor-
tion effects. Our approach also learns a symbolic representa-
tion for each song, i.e., how to transcribe each song as a se-

] M. Mohri.

ing and administering acquisition office. The content of this material
ISjaes not necessarily reflect the position or the policy of the Govern-
ent and no official endorsement should be inferred.
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